Extended Abstract

Motivation Video games provide a useful tool for developing Reinforcement Learning (RL)
systems with a variety of complexity levels, from basic policy methods to advanced planning and
meta-learning systems, in a safe and controlled environment. The visual aspect of video games is
especially important for developing computer vision systems, as in robotics. In this project, we
use this visual task of playing Super Mario Bros to push the boundaries of two fundamental RL
algorithms and better understand those systems from the ground up.

Methods For DQN, we did custom hyperparameter tuning and experimented with the following
adjustments to the algorithm: sampling methods (to select actions during training and testing; either
Epsilon-greedy exploration or Boltzmann exploration), warm-starting with behavior cloning from
human gameplay data (exploitation-focused playing, exploration-focused playing, or none), and
replay buffer pruning (using k-means clustering).

For PPO, in addition to hyperparameter tuning, we experimented with the sampling method and the
network architecture. For the sampling methods, we used Boltzmann sampling as well as a pseudo-
greedy sampling method, where the model is limited to selecting from the top-k highest-predicted
actions. (For k = 1, this is equivalent to true greedy sampling.) For the network architecture, we
began with the same underlying architecture as in the DQN experiments, and we expanded this
network to be both deeper (containing more layers) and wider (containing larger hidden dimensions).

Results For DQN, our best-performing system used Boltzmann exploration and was warm-started
from the expert exploration data, with no replay buffer pruning. We found that training with epsilon-
greedy exploration produced almost no constructive learning in the model. Similarly, replay buffer
pruning produced much worse performance during training and testing. Regarding generalization, we
found that the DQN model that beat level 1-1 could not successfully complete level 1-2, even after
extensive additional training.

For PPO, we conducted a targeted hyperparameter search to optimize agent performance. Further
improvements were achieved using the k-greedy action selection adaptation, which limited exploration
during inference to the top k = 3 scoring actions. With this setup, the PPO model successfully
completed Level 1-1 96.32% of the time, the highest success rate among all tested configurations.

Discussion For DQN, these results highlight the critical role of early exposure to diverse experiences
and effective exploration strategies in reinforcement learning. Warm-starting with exploration-heavy
expert data provided a broader foundation for learning, enabling the agent to discover robust behaviors
early on. Boltzmann sampling encouraged adaptive and value-informed exploration, leading to
smoother training, but struggled in sparse-reward scenarios—most notably, near the flag where
agents exhibited aimless behavior due to missing terminal rewards. Additionally, the removal of
outlier experiences via replay buffer pruning limited the model’s ability to learn or perform in novel
situations.

In contrast, PPO’s deterministic policies yielded more stable performance but limited adaptability;
the agent failed to recover from mistakes or generalize to new levels. This was evident in qualitative
behaviors such as getting stuck near unfamiliar enemies or failing to adjust to novel layouts. DQN,
while more chaotic in training, showed greater flexibility in recovery, aided by occasional stochastic
actions. Ultimately, PPO favored consistency over adaptability, while DQN relied heavily on
exploration mechanisms and environmental feedback—both highlighting the trade-offs between
stability, flexibility, and generalization in RL.

Conclusion In this work, we used reinforcement learning to train neural network systems to play
Super Mario Bros. from visual input data. In this context, we explored two reinforcement learning
algorithms: DQN and PPO. We observed the best overall performance from PPO, but we generally
observed a larger variation from algorithmic and architectural variations within each algorithm than
between the two groups. This project highlights the superlative importance of hyperparameter tuning
and other design decisions in the evaluation of reinforcement learning methods.
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Abstract

Video games provide a useful testbed for developing Reinforcement Learning (RL)
systems with visual components, due to the interactive nature and level of control
researchers can exercise over the environment. In this work, we used Super Mario
Bros. to investigate two fundamental RL algorithms: DQN and PPO, performing
hyperparameter search and making small algorithmic modifications to understand
what components are most essential for performance. We observed the best overall
performance from a PPO model, but we generally observed a larger variation from
algorithmic and architectural variations within each algorithm than between the
two groups. This result highlights the superlative importance of design details
in the evaluation of reinforcement learning methods, even more than the general
theory of the system. We found that, with RL, the devil truly is in the details.

1 Introduction

This project focuses on Super Mario Bros, a classic video game and popular RL development
environment. While previous methods have successfully trained agents to complete the first level,
they often reduce the challenge of the task by using specifically defined information about the state, so
that the agent doesn’t have to extract the information by the image of the current state. Additionally,
prior work often reduced the hardness of the game by reducing the number of actions that the agent
can choose from.

The objective of this project is to explore and compare different reinforcement learning techniques
in playing the game with the full control and images to mimic the experience that a human has.
This should also be a baseline for within the bigger challenge of playing from the visual improve
generalization across multiple Mario levels from visual-only input, and warm-starting with imitation
learning from expert play. By evaluating and contrasting these methods, we aim to identify effective
strategies for enabling agents to infer world states, reuse learned behaviors and adapt efficiently,
contributing to more robust RL systems suitable for complex, real-world applications.

2 Related Work

Video games are a popular application for new RL algorithms because they offer a safe and controlled
environment for training and evaluating. They allow for easy data collection through gameplay and
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eliminate real-world risks from poor policy decisions. Additionally, they provide a variety of levels
of input complexity, as agents can be trained from the true game state (e.g. the character positions) or
from observations, like image and sound. The visual aspect of video games is an especially valuable
aspect for training and testing visual RL models, which are widely used in robotics.

One notable video game platform for RL is the Arcade Learning Environment (ALE), created by
[Marc G. Bellemare| (2013). This platform emulates the Atari 2600 and includes implementation for a
few classic Atari games, like Beam Rider, Breakout, Enduro, Pong, Q*bert, Seaquest, Space Invader.
Since ALE’s introduction, Atari games have been a staple of reinforcement learning algorithm
development, including the original Deep Q-Network (DQN) paper (Mnih et al.] and more
recent works on model-based reinforcement learning (Werner Duvaud, 2019; [Finn et al.,|2017; [Hafner
et al.} 2024} [Voelcker et al.| [2025) and agentic LLM systems (Xu et al., 2025} Delfosse et al., 2025

Hao et al.|[2025)

The Super Mario Bros. environment used in this project is built on the OpenAI Gym
framework (Brockman et al} [2016)), which provides a standardized and widely-used platform for
building environment models for reinforcement learning (RL) research. Several RL architectures

have been applied to the Super Mario Bros. gym environment. Notably, (2023) and Nguyen!
2021} use Proximal Policy Optimization (PPO) (Schulman et al.,[2017), and [Kundu| (2023) and Jung

2016) use DQN to train agents to successfully complete the first level. However, these approaches
often simplified the action space by removing sprinting or only enabling simple jumps and forward
movement to make the learning problem more tractable.

3 Environment Details

Figure 1: An example frame from the sequence of four state images used as input to the neural
network.

We model the problem of learning to play Super Mario Bros as a Markov Decision Process (MDP),
defined by the tuple (S, A, P, R), with the following definitions:

» Action Space A: To give the agent full control over Mario and to closely mimic the
experience of a human player, we adopt the "COMPLEX MOVEMENT" action space,
which consists of 12 discrete actions (4 movement directions, jumping, running, standing
still, and combinations of direction/jump/run). To reduce computational overhead and
promote temporal consistency, the agent selects a new action every four frames, in line
with the methodology of Mnih et al.|(2013). The chosen action is then repeated for the
subsequent four frames.

* State Space S: In our setup, the agent’s observation is a concateation of the pixel data from
the four most recent game frames, enabling it to infer temporal information such as its own
velocity and the movement direction of nearby enemies. The OpenAl Gym environment
outputs RGB images with a resolution of 240x256 pixels, which we convert grayscale and
downsample to 84x84 pixels. The resulting four frames are then stacked along the channel
dimension to form a state tensor of shape 4x84x84. An example input frame is shown in
Figure[T}

* Rewards R: We adopt the reward structure defined by the OpenAl Gym environment,
where the reward at each time step ¢ is given by:

Rewardt =V +cp + dt

where v; encourages horizontal velocity, (co — ¢1) is the difference in clock value before ¢
and after c; the action, rewarding faster progression through the level, and d; = —15 if the



agent dies, otherwise 0. Notably, there is no explicit reward for completing a level or for
game-score-related actions such as defeating enemies or collecting coins. Completion is
incentivized implicitly by avoiding penalties due to time.

* Dynamics P: The environment dynamics are governed by the internal logic of the Super
Mario Bros simulation and the actions chosen by the agent. At each time step, the environ-
ment transitions deterministically from one state to the next based on the current state and
the selected action. These transitions include updates to Mario’s position, interactions with
terrain elements (e.g., platforms, pipes, and gaps), and responses to collisions with enemies
or items. There is minor stochastic variation between each run in the number of enemies,
particularly Goombas, in specific regions of the level.

We primarily trained and evaluated with the first level of Super Mario Bros., Level 1-1, but we also

performed some generalization experiments on Level 1-2, which had an underground environment
and produced very different visual observation distributions.

4 Models

Within our experiments, we used two primary algorithms to train agents in this Super Mario environ-
ment: Deep Q-learning (DQN) and Proximal Policy Optimization (PPO).
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Figure 2: The underlying neural network architectures used for our experiments. The convolutional
structure for@ was largely inspired by [Mnih et al.[(2013).

4.1 Deep Q-learning

The Deep Q-learning (DQN) algorithm we used for this project was originally proposed by Mnih et al.
(2013)). Q-learning generally trains a neural network to learn a Q-function that estimates the expected
trajectory reward from each possible action from a given state. Furthermore, DQN introduces a replay
buffer, from which minibatches of training experiences (represented by a 5-tuple of (state, action,
reward, next state, next action)) are sampled. Then, after doing a step of Q-learning, the model is
rolled-out and the resulting experiences are saved back to the replay buffer for future training. In
this algorithm, we experiment with a few design details of this algorithm, particularly: the sampling
method (for selecting actions during training and roll-out) and the initialization of the Q-network.

For this project, we used a convolutional neural network architecture to back our Q-network, similar
to the architecture designed by Mnih et al.| (2013), who also tackled game playing with pixel inputs.
Our network architecture can be seen in Figure [2a]

4.1.1 Sampling methods

We experimented with several sampling strategies to improve the agent’s ability to explore the
environment effectively during training:



1. Naive Epsilon-Greedy Sampling
Our initial approach was the standard epsilon-greedy strategy. At each decision point, the
agent chose a random action with probability €, and otherwise selected the action with the
highest predicted Q-value. This approach encourages exploration, particularly in the early
stages of training. The value of € was gradually decayed over time, under the assumption
that as the Q-function improves, it becomes more advantageous to exploit the learned policy.

2. Confidence-Based (Modified) Epsilon-Greedy Sampling
To refine the basic epsilon-greedy method, we developed a confidence-aware variant. In
this approach, a random action was selected with probability € only if the top two predicted
Q-values were close in magnitude. This indicates that the model lacks confidence in its
preferred action, and thus exploration is more likely to be beneficial. This strategy allows for
more targeted exploration and avoids unnecessary randomness when the model is confident
in its prediction.

3. Boltzmann Sampling
Our final sampling method used Boltzmann (or softmax) exploration. At each timestep, the
agent selected an action probabilistically, using a softmax over the predicted Q-values:

(Q(5.0)
Za’ BQ(s,a’)

Boltzmann sampling maintains a balance between exploration and exploitation by assigning
higher probabilities to actions with higher Q-values, while still allowing for stochastic
action selection. This makes it well-suited for situations where a purely greedy policy may
converge prematurely.

P(a) =

4.1.2 Warm-starting with Behavior Cloning

Another adaptation we made to improve initial training stability and learning efficiency was to
warm-start the Q-network using behavior cloning as an agent with expert demonstrations, rather than
randomly initializing. For the expert data, we had one of our group members play Level 1-1 of the
game in our environment for 12 successful runs, split into 2 data conditions. In the "exploitation"
condition, the human expert played with only the goal of successfully completing the level as soon
as possible, without dying. In the "exploration" condition, the expert played to explore more of the
game states, interacting with enemies, gathering coins, and occasionally getting stuck, while also
completing the level successfully.

4.2 Proximal Policy Optimization

In addition to DQN, we also investigated the Proximal Policy Optimization (PPO) algorithm (Schul;
man et al.,[2017). PPO is a policy-based, actor-critic algorithm that directly learns a stochastic policy
m(a|s) by maximizing the expected return through gradient ascent. It uses two neural networks: a
policy network (actor) that outputs action probabilities, and a value network (critic) that estimates the
state-value function V™ (s). The critic guides the policy updates by estimating the advantage function
A™ (s, a), which reflects the relative value of an action compared to the average performance at that
state:
A"(s,a) = Q" (s,a) — V7 (s)

The actor is trained to maximize the expected advantage, improving actions that yield higher returns.

To ensure stable and conservative updates, PPO optimizes a clipped surrogate objective rather than
the raw policy gradient. To enable this, r; () is defined as the probability ratio between the updated
and old policies for each of the states.

mo(at|st)
T 0014 (at|st)

The clipped objective prevents the ratio from moving too far from 1 within each policy update by
optimizing the following surrogate:

LYP(0) = By [min (4(0) Ay, clip(r(0),1 —e,14¢)A;)]

For our experiments, we used ¢ = 0.1, which is a typical value for ppo.

rt(ﬂ) =



In addition to clipping, an early stopping criterion based on the Kullback-Leibler (KL) divergence
between the new and old policies was implemented. During training, if the empirical KL divergence
exceeds a predefined threshold, the policy update is terminated early:

KL [7g,, (- [ 8¢) [| 7o (- | )] >0

For the final trainings of ppo, we used a value of § = 0.15.

4.2.1 General advantage estimates

To improve the performance and stability of the PPO agent, we implement Generalized Advantage
Estimation (GAE) |[Schulman et al.| (2016). GAE allows for a tunable trade-off between bias and
variance in the estimation of advantages by applying an exponentially weighted sum of temporal
differences, thereby smoothing the advantage signal over time.
ASAE(%A) = Z(*y/\)lét_H, where 0, =1 + YV (s441) — V(sy)
1=0

In our experiments, we choose a value of A = 0.95 as well as a value of v = 0.995.

4.2.2 K-greedy adaptation of PPO

To improve performance, we introduce a k-greedy variant of PPO for testing. With this method, the
agent selects actions only from the top & logits (highest-scoring actions), applying the softmax over
this restricted set. This reduces the chance of selecting poorly ranked actions that still retain non-zero
probability in standard PPO. While beneficial during testing, this method wasn’t used for training,
as it limits exploration and may prevent the agent from learning to use less likely but potentially
valuable actions.

5 Results and Discussion

5.1 Deep Q-learning (DQN)

Warm Start Sampling Method | Success Rate (%) Average Score  Average Coins
None Boltzmann 7.00 449.00 1.03
Exploitation Expert Boltzmann 33.00 575.00 1.21
Exploration Expert Boltzmann 60.00 774.42 1.59
Exploration Expert  Greedy (¢ = 0.005) 29.00 936.00 1.78

Table 1: Test performance of trained DQN models on Level 1-1. Success rate indicates the proportion
of test trajectories where the model completed the level in the time limit, without dying. All DQN
models were trained using Boltzmann sampling, and at test time, we compare the Boltzmann sampling
strategy with the epsilon greedy strategy for the DQN models. Each final model was tested for 100
trajectories.

We investigated three main components influencing DQN performance: the choice of sampling
strategy, warm-start initialization using behavior cloning, and replay buffer management. The best
performing models combined warm-starting from exploration-heavy expert data with Boltzmann
sampling, yielding higher rewards during training (as seen in Figure[3), and higher level completion
rates and better average scores at testing (as seen in Table[I]). Models trained from scratch struggled
to learn unless exploration was well-managed, and showed a huge reliance on the hyperparameter €.
Architectural choices in buffer management (such as clustering and pruning) negatively impacted
learning by removing valuable outlier experiences.

Sampling Results. Different sampling strategies had a noticeable impact on exploration and policy
quality. Boltzmann sampling improved training stability and led to smoother learning curves. In early
training phases, we found that Boltzmann sampling allowed the model to meaningfully explore and
build a better representation of the true environment Q-function. In contrast, e-greedy exploration
forced occasional random actions, which helped the system escape local optima but also introduced
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Figure 3: Environment rewards over training steps for the training of DQN models on Level 1-1. For
warm-started models, the first 100 steps are BC training on the expert data. The bolded curves were
smoothed using a moving average over a window of 50 steps, to indicate general trends.

too much instability, making it unusable for training. However, we found that e-greedy sampling at
test time (after training with Boltzmann sampling) achieved the highest average test score on Level
1-1, despite having poor performance at actually completing the level.

Warmstart Results. Pre-training the agent using behavior cloning on expert demonstrations
significantly accelerated learning. Among the warm-starting conditions, the exploration-focused
expert data outperformed the exploitation-only data across all metrics. The exploration expert exposed
the agent to a wider range of states and behaviors, enabling more robust policy learning. In contrast,
the exploitation expert limited the diversity of training data, which resulted in lower success rates
and less exploratory behavior. However, it should be noted that the quality of expert data mostly
influenced the early stages of training, and it was later diluted by the diversity of states encountered
during gameplay.

Qualitative Observations. Under e-greedy exploration, the agent initially relied on random actions,
often resulting in inefficient and erratic behavior before finding a working strategy. However, as
¢ decreased, the agent reached later stages of the level more reliably, but its ability to adapt to
new obstacles diminished. Most commonly, this model got stuck when the greedy action failed
to change the state, such as running into a wall, until a randomly sampled action bounced it out.
Despite this limitation, we did find that e-greedy exploration enhanced the agent’s ability to recover in
unexpected ways from suboptimal actions, learning behaviors such as jumping away from an enemy
or redirecting mid-air to land on one. This appears to be a beneficial side effect of the stochastic
exploration introduced by random actions.

Boltzmann sampling, by contrast, tended to get stuck in low-risk areas. For example, near the final
flag at the end of the level, the agent often jumped around aimlessly. We attributed this to a lack
of reward signal; reaching the flag itself provided no explicit reward, and the low velocity penalty
did not accumulate over as many actions, as the trajectory stopped when the flag is reached. To test
this hypothesis, we trained another agent with Boltzmann sampling and added a reward of 100 for
reaching the flag. Using identical hyperparameters and episode count, the modified agent mostly
overcame this failure mode. This behavior reveals a limitation of Boltzmann sampling in DQN: when
Q-values are similar for many actions, the agent is more likely to fall into suboptimal actions. While
reducing temperature can sharpen the action distribution, it may hinder learning, as seen with the
e-greedy models.

5.1.1 Generalization of DQN

We were interested in whether a DQN agent trained exclusively on Level 1 could generalize to Level
2 without additional fine-tuning. As shown in Table 2} models trained solely on Level 1 consistently
failed to make meaningful progress on Level 2, typically dying to the first new enemy encountered.



Retraining Sampling Method  Success Rate (%) Average Score  Average Coins

No Boltzmann 0 230.00 0.62
Yes Boltzmann 0 819.00 1.69
Yes e=10.01 0 755.00 2.03

Table 2: Generalization test performance. All results from DQN models, trained on Level 1-1
with Boltzmann Sampling. The retrained models took the Level 1-1 checkpoint and trained for an
additional 11,000 training episodes. Each final model was tested for 100 trajectories. See Appendix
for more results from the DQN generalization experiments.

This suggests limited transferability of the learned policy in the face of even moderate environmental
changes.

To investigate further, we resumed training from the final Level 1 checkpoints and continued training
the agents on Level 2 for an additional 10,000 steps (see Figure[7). These retrained models showed
improved performance over the original baseline, managing to survive longer and progress further
through the level. However, even with continued training, none of the models were able to fully
complete Level 2, indicating that generalization remained limited and task-specific adaptation was
still necessary.

DQN Generalization Qualitative Results. Visually, Level 2 differs significantly from Level 1,
featuring a darker color palette and introducing new enemy types. Although the visual domain shift
was partially mitigated using a grayscale (black and white) filter, the agent consistently failed to adapt
to the behavioral differences posed by the new enemies. In particular, it struggled to reliably bypass
or defeat one of the newly introduced enemy types within the training duration. This suggests that the
agent’s policy may have overfit to familiar patterns from Level 1. To address this limitation, further
training with additional expert demonstrations on the new level could provide more targeted guidance.
Alternatively, using a larger or more expressive neural network architecture may help capture the
broader distribution of state-action pairs necessary for generalization across levels.

5.2 Proximal Policy Optimization (PPO)

To enhance performance and stability of our PPO agent, we conducted a series of architectural and
hyperparameter experiments. Figure ] shows the training behavior of these architectural variations.
Initially, we began by using the same DQN convolutional network architecture (Figure [2a) for both
the policy and value networks in PPO. For this model, the value loss increased exponentially, and
we halted the training run prematurely due to the instability. To improve stability, we introduced a
larger and deeper convolutional architecture, as described in Section Additionally, we included
some input pre-processing, normalizing the input pixel values to a range between [0, 1], and we also
increased the training batch size from 64 to 256.

As shown in Figure[d] using the larger network for both the value and policy networks produced a
more stable value loss. However, we observed a strong correlation between rising value loss and
reward improvements, suggesting that value estimation errors could destabilize the policy in long
training runs. To mitigate this, we tested a hybrid setup, using the smaller, DQN-style network for
the policy and the larger architecture for the value. This configuration led to more stable value loss,
which was decorrelated from the performance of the policy net. This improved stability indicates that
when the policy is less complex, the expected outcome is easier to model, leading to improved value
estimates.

The performance of the policies (as seen in the top graph of Figure [} suggests that the value
estimates had limited immediate effect on the policy. Long-term training revealed that stable value
estimation was critical for the policy to converge. Most configurations performed comparably within
the first 1600 episodes (with reward accumulated over 1536 environment steps, which may span
multiple episodes). 1536 steps were chosen to fix the amount of memory needed within the GPU.
For comparison, a policy with chances of successfully ending the level often showed accumulated
rewards of over 15000. We trained the final version of ppo on 13700 games with network updates
every 8 games and 10 epochs of updates. The final success rate of our agent is shown in table 3| under
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the stochastic sampling method. We also tested that ppo agent with the restricted Pseudo-Greedy
method. The agent performed best with £ = 3, consistently finishing the game most of the tests.

Sampling method | Success Rate (%) Average Score  Average Coins
Stochastic 85.49 285.00 0
Pseudo-Greedy (k = 3) 96.32 278.00 0

Table 3: Test performance of the PPO models with the final architecture (large value network, smaller
policy network). Each model was trained with the specified sampling method and tested for 100
trajectories.

5.2.1 Qualitative Analysis of Proximal Policy Optimization

Unlike DQN, the PPO agent begins policy updates only after collecting a batch of interactions,
resulting in initially random behavior and slower learning in the early stage. Additionally, PPO
exhibits a fundamentally different form of exploration due to its probabilistic action selection, sampled
from a softmax distribution. Although this ensures non-zero probability for all actions in theory,
the policy often becomes nearly deterministic in practice, strongly favoring certain actions. This
deterministic behavior promotes stable and consistent trajectories once the policy has converged.
However, it also limits the agent’s capacity for learning recovery. Unlike DQN, which takes random
actions with a certain probability and is then forced to learn how to recover, PPO tends to avoid such
situations altogether.

The lack of recovery strategies in PPO was quantitatively reflected in the improved performance of a
k-greedy variant of the trained PPO agent (with £ = 3). Restricting the agent to sample only from its
top 3 most probable actions reduced trajectory variance and helped avoid states where the original
agent was more likely to get stuck or die.



5.2.2 Final Comparison: DQN vs. PPO

Motivated by the insights gained from hyperparameter tuning in PPO, we applied several analogous
modifications to the DQN setup to evaluate whether it could also achieve a high success rate on the
first Super Mario level. Specifically, we replaced the original DQN network with the value network
architecture used in PPO, adjusting the output size to match the number of discrete actions. We also
increased the learning rate to 1.5 x 10™%, raised the batch size to 32, and normalized input pixel
values to the [0, 1] range, consistent with the PPO preprocessing pipeline. These adjustments led to a
significant performance improvement, with the DQN agent achieving a success rate of up to 90.1%,
as shown in Table [4]

RL Algorithm  Success Rate (%) | Average Score Average Coins
DQN 91 194 0.02
PPO 96.32 278.00 0

Table 4: Test performance of final trained models on Level 1-1, after making modifications to the
DQN system inspired by our PPO investigation. Each final model was tested for 100 trajectories.

6 Conclusion

In this work, we used reinforcement learning to train neural network systems to play Super Mario
Bros. from visual input data. In this context, we studied two reinforcement learning algorithms: Deep
Q-learning (DQN) and Proximal Policy Optimization (PPO), exploring the impact of hyperparameters
and other design details for each algorithm. We observed the best overall performance from PPO,
using a larger network for the critic and sampling actions stochastically from a smaller network for
the actor. However, for both algorithms, we observed a larger variation due to design variations within
each algorithm than between the two groups. This finding highlights the superlative importance of
hyperparameter tuning and other design decisions in the evaluation and deployment of reinforcement
learning methods.

7 Team Contributions

* Nika: DQN implementation, hyperparameter tuning, and experimentation.

* Nils: Gather human expert data for BC training. PPO implementation, hyperparameter
tuning, and experimentation.

e Evelyn: PPO initial implementation, MuZero-implementation; data visualization, poster
drafting, report drafting + editing.

Changes from Proposal We removed the MuZero and MAML algorithms from our project and
instead focused more closely on the effects of hyperparameters, architecture details, and other design
decisions for only DQN and PPO.
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A Additional Results

A.1 DQN
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Figure 5: Distribution of final game scores from testing the DQN models on Level 1-1. Each model
was tested for 100 trajectories.
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Figure 6: Distribution of coin collection from testing the DQN models on Level 1-1. Each model was
tested for 100 trajectories.

A.1.1 DQN Generalization
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Figure 7: Environment rewards over training steps for the re-training of the Level 1-1 DQN network
on Level 1-2 experiences.

Level 1-2 Test Performance

50+ Original 1-1 (Boltzmann)
mean
Retrained (Boltzmann)
40+ mean
’\3 Retrained (Greedy)
< mean
> 301
@)
c
()
S
O 70
o 20
_
(I
10+
0 . . . . . .
0 500 1000 1500 2000 2500

Score

Figure 8: Distribution of final game scores from testing the DQN models on Level 1-2. Each model
was tested for 100 trajectories.
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Figure 9: Distribution of coin collection from testing the DQN models on Level 1-2. Each model was
tested for 100 trajectories.
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